SB-431542 [301836-41-9]

Référence T1726-25mg

Conditionnement : 25mg

Marque : TargetMol

Contactez votre distributeur local :


Téléphone : +1 850 650 7790

SB-431542

Catalog No. T1726   CAS 301836-41-9
Synonyms: SB 431542

SB-431542 is an inhibitor of ALK5/TGF-β type I Receptor (IC50=94 nM) and is selective. SB 431542 also has inhibitory activity against ALK4 and ALK7 but not other proteins. SB 431542 can be used for induced differentiation of stem cells.

All TargetMol products are for research or drug registration purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose in violation of laws and regulations.
SB-431542 Chemical Structure
SB-431542, CAS 301836-41-9
Description SB-431542 is an inhibitor of ALK5/TGF-β type I Receptor (IC50=94 nM) and is selective. SB 431542 also has inhibitory activity against ALK4 and ALK7 but not other proteins. SB 431542 can be used for induced differentiation of stem cells.
Targets&IC50 ALK5:94 nM, ALK4:140 nM
In vitro METHODS: Human renal cell 293T, human colon cancer-derived non-tumorigenic cell FET, and human lung adenocarcinoma cell A549 were treated with SB-431542 (2-10 μM) and TGF-β1 (12.5 ng/mL) for 1 h. The expression levels of the target proteins were detected by Western Blot.
RESULTS: TGF-β1 induced the complex formation between Smad2/3 and Smad4, and SB-431542 blocked the complex formation by blocking TGF-β-induced phosphorylation and Smad2/3 activation in a dose-dependent manner. [1]
METHODS: Human glioblastoma cells D54MG were treated with SB-431542 (1-10 μM) for 24 h, and cell migration was detected by Transwell.
RESULTS: SB-431542 inhibited TGF-βRI signaling and blocked cell migration of D54MG cells in a concentration-dependent manner. [2]
METHODS: Human pluripotent stem cells hESCs were cultured in KSR medium containing SB-431542 (10 nM) and Noggin (500 ng/mL) for 11 days, and cell differentiation was detected using Immunofluorescence.
RESULTS: Neural induction was monitored by the expression of PAX6, an early marker of neuroectodermal differentiation. Combined treatment with Noggin and SB-431542 significantly increased the efficiency of neural induction to more than 80% of the total cells compared to less than 10% of PAX6+ cells when Noggin or SB-431542 were used alone. [3]
In vivo METHODS: To test the antitumor activity in vivo, SB-431542 (10 mg/kg in 20% DMSO/80% corn oil) was intraperitoneally injected three times a week for four weeks into Balb/c mice bearing mouse mammary cancer tumor 4T1.
RESULTS: SB-431542 significantly inhibited lung metastasis of 4T1 mammary tumors. [4]
METHODS: To investigate the treatment of tendon injuries, SB-431542 (10 mg/kg) was injected intraperitoneally into a C57B/6J mouse model with massive rotator cuff tears once daily for two or six weeks.
RESULTS: Inhibition of TGF-β1 signaling by SB-431542 reduced fibrosis, fat infiltration, and muscle weight loss. SB-431542 treatment reduced the number of FAPs in the injured muscle by promoting apoptosis of fibro/adipogenic progenitor cells (FAPs), which are an important cellular source of fibrosis and fat infiltration in the rotator cuff muscle. [5]
Kinase Assay Kinase assays were performed with 65 nM GSTALK5 and 184 nM GST-Smad3 in 50 mM HEPES, 5 mM MgCl2, 1 mM CaCl2, 1 mM dithiothreitol, and 3 M ATP. Reactions were incubated with 0.5 μCi of [33P]γATP for 3 h at 30°C. Phosphorylated protein was captured on P-81 paper, washed with 0.5% phosphoric acid, and counted by liquid scintillation. Alternatively, Smad3 or Smad1 protein was also coated onto FlashPlate Sterile Basic Microplates. Kinase assays were then performed in FlashPlates with same assay conditions using either the kinase domain of ALK5 with Smad3 as a substrate or the kinase domain of ALK6 (BMP receptor) with Smad1 as substrate. Plates were washed three times with phosphate buffer and counted by TopCount [2].
Cell Research A498 cells were seeded at 5,000 to 10,000 cells/well in 96-well plates. The cells were serum-deprived for 24 h and then treated with compounds for 48 h to assess the cellular toxicity. Cell viability is determined by incubating cells for 4 h with XTT labeling and electron coupling reagent. Live cells with active mitochondria produce an orange-colored product, formazan, which is detected using a plate reader at between A450 nm and A500 nm with a reference wavelength greater than 600 nm. The absorbance values correlate with the number of viable cells [2].
Animal Research BALB/c mice received intraperitoneal (i.p.) injections of colon-26 tumor cells. Three days after tumor cell inoculation, SB-431542 (1 μM solution, 100 μl/animal) or vehicle alone was directly injected into the peritoneal cavity. CTL activities were measured by a standard 4 h 51Cr release assay after culturing spleen cells with γ-irradiated tumor cells for five days in the absence of added growth factors. In vitro experiments, cell lysate of HLA-A*2402 positive gastric cancer cell line, OCUM-8, was incubated with human DC cultures for 4 h. After washing extensively, PBMCs obtained from the same volunteer as DCs were incubated for 7 days and measured CTL activity by 51Cr release assay. NK activity was tested using 51Cr release assay against K562 [4].
Synonyms SB 431542
Molecular Weight 384.39
Formula C22H16N4O3
CAS No. 301836-41-9

Storage

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Solubility Information

DMSO: 16.67 mg/mL (43.36 mM)

Ethanol: 3.8 mg/mL (10 mM)

TargetMolReferences and Literature

1. Halder SK, et al. A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia. 2005 May;7(5):509-21. 2. Hjelmeland MD, et al. SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther. 2004 Jun;3(6):737-45. 3. Chambers SM, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009 Mar;27(3):275-80. doi: 10.1038/nbt.1529. Epub 2009 Mar 1. Erratum in: Nat Biotechnol. 2009 May;27(5):485. 4. Sato M, et al. Differential Proteome Analysis Identifies TGF-β-Related Pro-Metastatic Proteins in a 4T1 Murine Breast Cancer Model. PLoS One. 2015 May 18;10(5):e0126483. 5. Davies MR, et al. TGF-β Small Molecule Inhibitor SB431542 Reduces Rotator Cuff Muscle Fibrosis and Fatty Infiltration By Promoting Fibro/Adipogenic Progenitor Apoptosis. PLoS One. 2016 May 17;11(5):e0155486. 6. Ma J, et al. Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion. Brain Res Bull. 2018 Feb 9;139:38-47. 7. Duan F, Huang R, Zhang F, et al. Biphasic modulation of insulin signaling enables highly efficient hematopoietic differentiation from human pluripotent stem cells[J]. Stem cell research & therapy. 2018 Jul 27;9(1):205. 8. Xiong, Yanlu, et al. TFAP2A potentiates lung adenocarcinoma metastasis by a novel miR-16 family/TFAP2A/PSG9/TGF-β signaling pathway. . Cell Death & Disease . 12.4 (2021): 1-13. 9. Chen F, Gao Q, Wei A, et al. Histone deacetylase 3 aberration inhibits Klotho transcription and promotes renal fibrosis[J]. Cell Death & Differentiation. 2020: 1-12.

TargetMolCitations

1. Chen X, Wang P, Qiu H, et al. Integrative epigenomic and transcriptomic analysis reveals the requirement of JUNB for hematopoietic fate induction. Nature Communications. 2022, 13(1): 1-16 2. Duan F, Huang R, Zhang F, et al. Biphasic modulation of insulin signaling enables highly efficient hematopoietic differentiation from human pluripotent stem cells. Stem Cell Research & Therapy. 2018 Jul 27;9(1):205 3. Bao, Shixiang, et al. TGF-β1 Induces Immune Escape by Enhancing PD-1 and CTLA-4 Expression on T Lymphocytes in Hepatocellular Carcinoma. Frontiers in Oncology. 11 (2021): 2516. 4. Bao, Shixiang, et al. TGF-β1 Induces Immune Escape by Enhancing PD-1 and CTLA-4 Expression on T Lymphocytes in Hepatocellular Carcinoma. Frontiers in Oncology. 11 (2021): 2516. 5. Bao, Shixiang, et al. TGF-β1 Induces Immune Escape by Enhancing PD-1 and CTLA-4 Expression on T Lymphocytes in Hepatocellular Carcinoma. Frontiers in Oncology. 11 (2021): 2516. 6. Fu J, Jiang L, Yu B, et al. Generation of a Human iPSC Line CIBi010-A with a Reporter for ASGR1 Using CRISPR/Cas9. Stem Cell Research. 2022: 102800 7. Liu S, Yan X, Guo J, et al.Periodontal ligament‐associated protein‐1 knockout mice regulate the differentiation of osteoclasts and osteoblasts through TGF‐β1/Smad signaling pathway.Journal of Cellular Physiology.2023 8. Ying J, Wang P, Jin X, et al.TGF-β1 Mediates the EndoMt in High Glucose-Treated Human Retinal Microvascular Endothelial Cells.Seminars in Ophthalmology. Taylor & Francis.2024: 1-8.

Vous serez peut-être également intéressé par les produits suivants :



Référence
Description
Cond.
Prix HT
HY-78131A-1g
 1g