

HSTM Taq DNA Polymerase

Ref: NB-03-0103 250 U

NB-03-0104 500 U NB-03-0105 1 000 U NB-03-0106 18 000 U

Contents

	NB-03-0103	NB-03-0104	NB-03-0105	NB-03-0106
HS TM Taq DNA Polymerase (5U/μl)	50 μl	100 μl	200 μl	100 μl x36
10X HS™ PCR Buffer	1.4 ml	1.4 ml	1.4 ml x2	1.4 ml x36
6X Loading Buffer	1 ml	1 ml	1 ml	

Description

HSTM Taq DNA Polymerase is a thermostable recombinant DNA polymerase derived from thermophilic bacterium Thermus aquaticus , its molecular weight is 94 kDa. HSTM Taq DNA Polymerase can amplify DNA target up to 5 kb. The elongation velocity is 0.9~1.2kb/min. It has 5' to 3' polymerase activity but lacks of 3' to 5' exoneclease activity, which results in a 3'-dA overhangs PCR product. All conponents of the HSTM PCR Buffer are at optimal concentration for efficient amplification, it contributes to highly specific incorporation of primer and template.

Features

- Highly thermostable -have a half-life of over 40 min at 95°C incubation
- Generates 3'-dA overhangs PCR products

Applications

- PCRamplification of DNA fragments as long as 5 kb
- DNA labeling
- DNA sequencing
- Generate PCR product for TA cloning

Quality Control

The absence of endodeoxyribonucleases, exodeoxyribonucleases and ribonucleases confirmed by appropriate quality tests.

Functionally tested in PCR

10X HSTM PCR Buffer

120 mM Tris-HCl (pH 8.8), 500 mM KCl, 1%Triton-X-100, 100 mM Lycine, 25 mM MgCl₂

Storage Buffer

20 mM Tris-HCl (pH8.0), 100mM KCl, 3 mM MgCl₂ 1mM DTT, 0.1% NP-40, 0.1% Tween20, 0.2mg/ml BSA, 50% (v/v) glycerol

Definition of Activity Unit

One unit is defined as the amount of the enzyme required to catalyze the incorporation of 10 nM of dNTPs into an acid-insoluble form in 30 minutes at 70°C using hering sperm DNA as substrate.

Basic PCR Protocol

The following basic protocol serves as a general guideline and a starting point for any PCR amplification. Optimal reaction conditions (incubation time and temperature, concentration of HSTM Taq DNA Polymerase primers, MgCl₂, and template DNA) vary and need to be optimized.

1. Add the following components to a sterile microcentrifuge tube sitting on ice:

Recommended PCR assay with HSTM PCR Buffer (Mg²⁺ plus)

Reagent	Quantity for 50µl of reaction mixture	Final Concentration
Sterile deionized water	variable	-
10X HS TM PCR Buffer (Mg ²⁺ plus)	5 μl	1X
dNTPs (10mM each)	1 μl	0.2 mM each
Primer I	variable	0.4 - 1 μΜ
Primer II	variable	0.4 - 1 μΜ
HS TM Taq DNA Polymerase $(5U/\mu l)$	0.25 - 0.5 μl	1.25 - 2.5U/50 μl
Template DNA	variable	10pg-1μg
Total		50 μ1

Recommandations with Template DNA in a 50 µl reaction volume

Human genomic DNA	0.1 μg - 1 μg
Plasmid DNA	0.5 ng - 5 ng
Phage DNA	0.1 ng - 10 ng
E.coli genomic DNA	10 ng - 100 ng

- 2. Mix contents of tube. Cap tubes and centrifuge briefly to collect the contents to the bottom. When using a thermal cycler that does not contain a heated lid, overlay the reaction mixture with 25 µl mineral oil.
- 3. Perform 25-35 cycles of PCR amplification as follows:

Initial Denaturation	94℃	3 minutes
25-35 cycles	94℃ 55-68℃ 72℃	30 seconds 30 seconds 1 minute
Final extension	72 ℃	10 minutes

- 4. Incubate for an additional 10 min at 72°C and maintain the reaction at 4°C. The samples can be stored at -20°C until use.
- 5. Analyze the amplification products by agarose gel electrophoresis and visualize by ethidium bromide staining. Use appropriate molecular weight standards.

Note:

- *HS*TM Taq DNA Polymerase is for High Specificity PCR applications.
- The half-life of enzyme is >40 minutes at 95°C.
- The error rate of HS^{TM} Taq DNA Polymerase in PCR is 2.2×10^{-5} errors per nt per cycle; the accuracy (an inverse of the error rate) an average number of correct nucleotides incorporated before making an error, is 4.5×10^{-4} (determined according to the modified method described in).
- *HS*TM Taq DNA Polymerase accepts modified nucleotides (e.g. biotin-, digoxigenin-, fluorescent-labeled nucleotides) as substrates for the DNA synthesis.
- The number of PCR cycles depends on the amount of template DNA in the reaction mix and on the expected yield of the PCR product. 25-35 cycles are usually sufficient for the majority PCR reaction. Low amounts of starting template may require 40 cycles.

Store all components at -20°C