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Mouse Anti-Methylglyoxal Monoclonal Antibody 

 

 

CATALOG NUMBER:   STA-011   STORAGE: -20ºC 

 

QUANTITY AND CONCENTRATION:  100 µg of affinity purified antibody at 1.25 mg/mL in PBS 

containing 0.2% 5-bromo-5-nitro-1,3-dioxane 

 

SHELF LIFE:  1 year from date of receipt under proper storage conditions; 

aliquot to avoid multiple freeze thaw cycles 

 

HOST SPECIES:    Mouse 

 

CLONE:     3D11 

 

IMMUNOGEN:     MG-modified ovalbumin 

 

SPECIFICITY:  MG-modified proteins, lipids and nucleic acids (MG-

H1(methyl-glyoxal-hydro-imidazolone) based on HPLC and 

GC-MS).  3D11 does not react with CML, CEL, or other 

AGE epitopes. 

 

APPLICATION:     Immunoblot (1:1000 to 1:4000) 

      Immunohistochemistry (1:20 to 1:60) 

 

Background 

The non-enzymatic reaction of reducing carbohydrates with lysine side chains and N-terminal amino 

groups of macromolecules (proteins, phospholipids and nucleic acids) is called the Maillard reaction or 

glycation.  The products of this process, termed advanced glycation end products (AGEs), adversely 

affect the functional properties of proteins, lipids and DNA.  Tissue levels of AGE increase with age and 

the formation of AGEs is predominantly endogenous, though these products can also be derived from 

exogenous sources such as food and tobacco smoke.  AGE modification of proteins can contribute to the 

pathophysiology of aging and long-term complications of diabetes, atherosclerosis and renal failure.  

AGEs also interact with a variety of cell-surface AGE-binding receptors (RAGE), leading either to their 

endocytosis and degradation or to cellular activation and pro-oxidant or pro-inflammatory events.  

 

Several AGE structures have been reported, such as Nε-(carboxymethyl) lysine (CML), Nε-(carboxyethyl) 

lysine (CEL), pentosidine, and Methylglyoxal (MG) derivatives.  MG is formed through non-oxidative 

mechanisms from triose phosphates during anaerobic glycolysis and it can modify amino acids, nucleic 

acids, and proteins.  MG reacts with arginine, lysine and cysteine residues of proteins to form AGEs.  MG 

is involved in various pathological processes.  For example, MG derivatives are found elevated in 

diabetes. 
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Warranty 
These products are warranted to perform as described in their labeling and in Cell Biolabs literature when used in accordance 

with their instructions.  THERE ARE NO WARRANTIES THAT EXTEND BEYOND THIS EXPRESSED WARRANTY 

AND CELL BIOLABS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF 

FITNESS FOR PARTICULAR PURPOSE.  CELL BIOLABS’s sole obligation and purchaser’s exclusive remedy for breach 

of this warranty shall be, at the option of CELL BIOLABS, to repair or replace the products. In no event shall CELL 

BIOLABS be liable for any proximate, incidental or consequential damages in connection with the products. 

 

This product is for RESEARCH USE ONLY; not for use in diagnostic procedures. 
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Cell Biolabs, Inc. 

7758 Arjons Drive 

San Diego, CA 92126 

Worldwide: +1 858-271-6500 

USA Toll-Free: 1-888-CBL-0505 

E-mail: tech@cellbiolabs.com 

www.cellbiolabs.com  
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